Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.313
Filtrar
1.
Nat Commun ; 15(1): 3145, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605005

RESUMO

Naked mole-rats (NMRs) are best known for their extreme longevity and cancer resistance, suggesting that their immune system might have evolved to facilitate these phenotypes. Natural killer (NK) and T cells have evolved to detect and destroy cells infected with pathogens and to provide an early response to malignancies. While it is known that NMRs lack NK cells, likely lost during evolution, little is known about their T-cell subsets in terms of the evolution of the genes that regulate their function, their clonotypic diversity, and the thymus where they mature. Here we find, using single-cell transcriptomics, that NMRs have a large circulating population of γδT cells, which in mice and humans mostly reside in peripheral tissues and induce anti-cancer cytotoxicity. Using single-cell-T-cell-receptor sequencing, we find that a cytotoxic γδT-cell subset of NMRs harbors a dominant clonotype, and that their conventional CD8 αßT cells exhibit modest clonotypic diversity. Consistently, perinatal NMR thymuses are considerably smaller than those of mice yet follow similar involution progression. Our findings suggest that NMRs have evolved under a relaxed intracellular pathogenic selective pressure that may have allowed cancer resistance and longevity to become stronger targets of selection to which the immune system has responded by utilizing γδT cells.


Assuntos
Longevidade , Neoplasias , Humanos , Animais , Camundongos , Longevidade/fisiologia , Neoplasias/genética , Subpopulações de Linfócitos T , Células Matadoras Naturais , Ratos-Toupeira/fisiologia
2.
Biochemistry (Mosc) ; 89(2): 371-376, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622103

RESUMO

The article describes the history of studies of survival data carried out at the Research Institute of Physico-Chemical Biology under the leadership of Academician V. P. Skulachev from 1970s until present, with special emphasis on the last decade. The use of accelerated failure time (AFT) model and analysis of coefficient of variation of lifespan (CVLS) in addition to the Gompertz methods of analysis, allows to assess survival curves for the presence of temporal scaling (i.e., manifestation of accelerated aging), without changing the shape of survival curve with the same coefficient of variation. A modification of the AFT model that uses temporal scaling as the null hypothesis made it possible to distinguish between the quantitative and qualitative differences in the dynamics of aging. It was also shown that it is possible to compare the data on the survival of species characterized by the survival curves of the original shape (i.e., "flat" curves without a pronounced increase in the probability of death with age typical of slowly aging species), when considering the distribution of lifespan as a statistical random variable and comparing parameters of such distribution. Thus, it was demonstrated that the higher impact of mortality caused by external factors (background mortality) in addition to the age-dependent mortality, the higher the disorder of mortality values and the greater its difference from the calculated value characteristic of developed countries (15-20%). For comparison, CVLS for the Paraguayan Ache Indians is 100% (57% if we exclude prepuberty individuals as suggested by Jones et al.). According to Skulachev, the next step is considering mortality fluctuations as a measure for the disorder of survival data. Visual evaluation of survival curves can already provide important data for subsequent analysis. Thus, Sokolov and Severin [1] found that mutations have different effects on the shape of survival curves. Type I survival curves generally retains their standard convex rectangular shape, while type II curves demonstrate a sharp increase in the mortality which makes them similar to a concave exponential curve with a stably high mortality rate. It is noteworthy that despite these differences, mutations in groups I and II are of a similar nature. They are associated (i) with "DNA metabolism" (DNA repair, transcription, and replication); (ii) protection against oxidative stress, associated with the activity of the transcription factor Nrf2, and (iii) regulation of proliferation, and (or these categories may overlap). However, these different mutations appear to produce the same result at the organismal level, namely, accelerated aging according to the Gompertz's law. This might be explained by the fact that all these mutations, each in its own unique way, either reduce the lifespan of cells or accelerate their transition to the senescent state, which supports the concept of Skulachev on the existence of multiple pathways of aging (chronic phenoptosis).


Assuntos
Envelhecimento , Longevidade , Humanos , Longevidade/fisiologia , Envelhecimento/genética , Mutação , Estresse Oxidativo
3.
Cell Rep ; 43(3): 113899, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446666

RESUMO

Insulin-mechanistic target of rapamycin (mTOR) signaling drives anabolic growth during organismal development; its late-life dysregulation contributes to aging and limits lifespans. Age-related regulatory mechanisms and functional consequences of insulin-mTOR remain incompletely understood. Here, we identify LPD-3 as a megaprotein that orchestrates the tempo of insulin-mTOR signaling during C. elegans aging. We find that an agonist insulin, INS-7, is drastically overproduced from early life and shortens lifespan in lpd-3 mutants. LPD-3 forms a bridge-like tunnel megaprotein to facilitate non-vesicular cellular lipid trafficking. Lipidomic profiling reveals increased hexaceramide species in lpd-3 mutants, accompanied by up-regulation of hexaceramide biosynthetic enzymes, including HYL-1. Reducing the abundance of HYL-1, insulin receptor/DAF-2 or mTOR/LET-363, normalizes INS-7 levels and rescues the lifespan of lpd-3 mutants. LPD-3 antagonizes SINH-1, a key mTORC2 component, and decreases expression with age. We propose that LPD-3 acts as a megaprotein brake for organismal aging and that its age-dependent decline restricts lifespan through the sphingolipid-hexaceramide and insulin-mTOR pathways.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Envelhecimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Insulina/metabolismo , Longevidade/fisiologia , Serina-Treonina Quinases TOR/metabolismo
4.
Ecol Lett ; 27(3): e14390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38549267

RESUMO

Chance pervades life. In turn, life histories are described by probabilities (e.g. survival and breeding) and averages across individuals (e.g. mean growth rate and age at maturity). In this study, we explored patterns of luck in lifetime outcomes by analysing structured population models for a wide array of plant and animal species. We calculated four response variables: variance and skewness in both lifespan and lifetime reproductive output (LRO), and partitioned them into contributions from different forms of luck. We examined relationships among response variables and a variety of life history traits. We found that variance in lifespan and variance in LRO were positively correlated across taxa, but that variance and skewness were negatively correlated for both lifespan and LRO. The most important life history trait was longevity, which shaped variance and skew in LRO through its effects on variance in lifespan. We found that luck in survival, growth, and fecundity all contributed to variance in LRO, but skew in LRO was overwhelmingly due to survival luck. Rapidly growing populations have larger variances in LRO and lifespan than shrinking populations. Our results indicate that luck-induced genetic drift may be most severe in recovering populations of species with long mature lifespan and high iteroparity.


Assuntos
Traços de História de Vida , Reprodução , Humanos , Animais , Reprodução/genética , Fertilidade , Deriva Genética , Longevidade/fisiologia
6.
Appl Environ Microbiol ; 90(4): e0179923, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470148

RESUMO

Queen and worker bees are natural models for aging research, as their lifespans vary considerably independent of genetic variation. Investigating the reasons why queens live longer than workers is of great significance for research on the universal processes of aging in animals. The gut microbiome has received attention as a vital regulator of host health, while its precise role in honeybee aging needs further investigation. The effects and mechanisms behind the relationship between gut microbiota and worker lifespan were measured by transplanting queen bee gut bacteria (QG) and worker bee gut bacteria (WG) into microbiota-free (MF) workers. The transplantation of QG to MF bees significantly extended the workers' lifespans compared with MF and WG bees. Untargeted metabolomics identified 49 lifespan-related differential metabolites, and Kyoto Encyclopedia of Genes and Genomes analysis of these revealed three lifespan-related metabolic pathways: insulin/insulin-like growth factor signaling, immune, and ketone body metabolism pathways. Further verification showed that QG inhibited the expression of insulin-like peptides (ILPs), and the expression of ILPs was lower in natural queens than in natural workers. QG transplantation also stimulated the expression of antioxidant genes and lowered oxidative damage products in natural queen bees. However, gut microbiota transplantation failed to mimic the immune properties and ketone body metabolism profiles of natural queens and workers. Concisely, QG could increase the antioxidant capacity to extend lifespan by inhibiting insulin signaling. These findings may help determine the mechanisms behind queen longevity and provide further insights into the role of gut symbionts. IMPORTANCE: Queen and worker bees share the same genetic background but have vastly different lifespans. The gut microbiome regulates host health, suggesting that differences in lifespan between queen and worker bees could be related to gut bacteria. Herein, we used an innovative method to transplant gut microbiota from adult queen or worker bees to microbiota-free bees. The transplantation of queen gut microbiota to microbiota-free bees extended their lifespan. Insulin/insulin-like growth factor signaling, a highly conserved metabolic pathway related to lifespan, displayed identical expression profiles in natural queen bees and microbiota-free bees transplanted with queen microbiota. This finding significantly expands our understanding of the relationships between intestinal bacteria, host health, and the biology of aging.


Assuntos
Microbioma Gastrointestinal , Longevidade , Abelhas , Animais , Longevidade/fisiologia , Insulina , Antioxidantes , Cetonas
7.
Nature ; 627(8004): 579-585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480878

RESUMO

Understanding how and why menopause has evolved is a long-standing challenge across disciplines. Females can typically maximize their reproductive success by reproducing for the whole of their adult life. In humans, however, women cease reproduction several decades before the end of their natural lifespan1,2. Although progress has been made in understanding the adaptive value of menopause in humans3,4, the generality of these findings remains unclear. Toothed whales are the only mammal taxon in which menopause has evolved several times5, providing a unique opportunity to test the theories of how and why menopause evolves in a comparative context. Here, we assemble and analyse a comparative database to test competing evolutionary hypotheses. We find that menopause evolved in toothed whales by females extending their lifespan without increasing their reproductive lifespan, as predicted by the 'live-long' hypotheses. We further show that menopause results in females increasing their opportunity for intergenerational help by increasing their lifespan overlap with their grandoffspring and offspring without increasing their reproductive overlap with their daughters. Our results provide an informative comparison for the evolution of human life history and demonstrate that the same pathway that led to menopause in humans can also explain the evolution of menopause in toothed whales.


Assuntos
Evolução Biológica , Menopausa , Modelos Biológicos , Baleias , Animais , Feminino , Bases de Dados Factuais , Longevidade/fisiologia , Menopausa/fisiologia , Reprodução/fisiologia , Baleias/classificação , Baleias/fisiologia , Humanos
8.
Mol Metab ; 81: 101902, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360109

RESUMO

OBJECTIVE: Rapamycin, a powerful geroprotective drug, can have detrimental effects when administered chronically. We determined whether intermittent treatment of mice can reduce negative effects while maintaining benefits of chronic treatment. METHODS: From 6 months of age, male and female C3B6F1 hybrid mice were either continuously fed with 42 mg/kg rapamycin, or intermittently fed by alternating weekly feeding of 42 mg/kg rapamycin food with weekly control feeding. Survival of these mice compared to control animals was measured. Furthermore, longitudinal phenotyping including metabolic (body composition, GTT, ITT, indirect calorimetry) and fitness phenotypes (treadmil, rotarod, electrocardiography and open field) was performed. Organ specific pathology was assessed at 24 months of age. RESULTS: Chronic rapamycin treatment induced glucose intolerance, which was partially ameliorated by intermittent treatment. Chronic and intermittent rapamycin treatments increased lifespan equally in males, while in females chronic treatment resulted in slightly higher survival. The two treatments had equivalent effects on testicular degeneration, heart fibrosis and liver lipidosis. In males, the two treatment regimes led to a similar increase in motor coordination, heart rate and Q-T interval, and reduction in spleen weight, while in females, they equally reduced BAT inflammation and spleen weight and maintained heart rate and Q-T interval. However, other health parameters, including age related pathologies, were better prevented by continuous treatment. CONCLUSIONS: Intermittent rapamycin treatment is effective in prolonging lifespan and reduces some side-effects of chronic treatment, but chronic treatment is more beneficial to healthspan.


Assuntos
Fígado Gorduroso , Intolerância à Glucose , Masculino , Feminino , Camundongos , Animais , Longevidade/fisiologia , Sirolimo/farmacologia , Inflamação
9.
Artigo em Inglês | MEDLINE | ID: mdl-38366688

RESUMO

Procyanidins are gaining attention due to their potential health benefits. We found that cacao liquor procyanidin (CLPr) from Theobroma cacao seeds increased the lifespan of Caenorhabditis elegans, a representative model organism for aging studies. The genetic dependence of the lifespan-extending effect of CLPr was consistent with that of blueberry procyanidin, which is dependent on unc-43, osr-1, sek-1, and mev-1, but not on daf-16, sir-2.1, or skn-1. The lifespan-extending effect of CLPr was inhibited by neuron-specific RNA interference (RNAi) targeting unc-43 and pmk-1, and in worms with loss-of-function mutations in the odr-3, odr-1, or tax-4 genes, which are essential in sensory neurons, including AWC neurons. It was also inhibited in worms in which AWC neurons or AIB interneurons had been eliminated, and in worms with loss-of-function mutations in eat-4 or glr-1, which are responsible for glutamatergic synaptic transmission. These results suggest that the lifespan-extending effect of CLPr is dependent on the nervous system. In addition, it also requires unc-43 and pmk-1 expression in nonneuronal cells, as demonstrated by the experiments with RNAi in wild-type worms, the neuronal cells of which are not affected by systemic RNAi. The osr-1 gene is expressed in hypodermal and intestinal cells and regulates the response to osmotic stress along with unc-43/calcium/calmodulin-dependent protein kinase II and the p38 mitogen-activated protein kinase pathway. Consistent with this, CLPr improved osmotic stress tolerance in an unc-43- and pmk-1-dependent manner, and it was also dependent on AWC neurons. The lifespan-extending and osmotic-tolerance-improving activities were attributed to procyanidins with a tetrameric or higher-order oligomeric structure.


Assuntos
Biflavonoides , Cacau , Proteínas de Caenorhabditis elegans , Catequina , Proantocianidinas , Animais , Caenorhabditis elegans/fisiologia , Longevidade/fisiologia , Proantocianidinas/farmacologia , Proantocianidinas/metabolismo , Cacau/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervoso/metabolismo
10.
Nat Commun ; 15(1): 276, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177158

RESUMO

Dysfunctional extracellular matrices (ECM) contribute to aging and disease. Repairing dysfunctional ECM could potentially prevent age-related pathologies. Interventions promoting longevity also impact ECM gene expression. However, the role of ECM composition changes in healthy aging remains unclear. Here we perform proteomics and in-vivo monitoring to systematically investigate ECM composition (matreotype) during aging in C. elegans revealing three distinct collagen dynamics. Longevity interventions slow age-related collagen stiffening and prolong the expression of collagens that are turned over. These prolonged collagen dynamics are mediated by a mechanical feedback loop of hemidesmosome-containing structures that span from the exoskeletal ECM through the hypodermis, basement membrane ECM, to the muscles, coupling mechanical forces to adjust ECM gene expression and longevity via the transcriptional co-activator YAP-1 across tissues. Our results provide in-vivo evidence that coordinated ECM remodeling through mechanotransduction is required and sufficient to promote longevity, offering potential avenues for interventions targeting ECM dynamics.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Longevidade/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Mecanotransdução Celular , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Homeostase , Proteínas de Sinalização YAP , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
11.
Gerontology ; 70(4): 408-417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38228128

RESUMO

INTRODUCTION: While several antidepressants have been identified as potential geroprotectors, the effect and mechanism of sertraline on healthspan remain to be elucidated. Here, we explored the role of sertraline in the lifespan and healthspan of Caenorhabditis elegans. METHODS: The optimal effect concentration of sertraline was first screened in wild-type N2 worms under heat stress conditions. Then, we examined the effects of sertraline on lifespan, reproduction, lipofuscin accumulation, mobility, and stress resistance. Finally, the expression of serotonin signaling and aging-related genes was investigated to explore the underlying mechanism, and the lifespan assays were performed in ser-7 RNAi strain, daf-2, daf-16, and aak-2 mutants. RESULTS: Sertraline extended the lifespan in C. elegans with concomitant extension of healthspan as indicated by increasing mobility and reducing fertility and lipofuscin accumulation, as well as enhanced resistance to different abiotic stresses. Mechanistically, ser-7 orchestrated sertraline-induced longevity via the regulation of insulin and AMPK pathways, and sertraline-induced lifespan extension in nematodes was abolished in ser-7 RNAi strain, daf-2, daf-16, and aak-2 mutants. CONCLUSION: Sertraline promotes health and longevity in C. elegans through ser-7-insulin/AMPK pathways.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Longevidade/fisiologia , Sertralina/farmacologia , Sertralina/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Lipofuscina/metabolismo , Lipofuscina/farmacologia , Insulina , Fatores de Transcrição Forkhead/genética
12.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284547

RESUMO

The renin-angiotensin-aldosterone system (RAAS) plays a well-characterized role regulating blood pressure in mammals. Pharmacological and genetic manipulation of the RAAS has been shown to extend lifespan in Caenorhabditis elegans, Drosophila and rodents, but its mechanism is not well defined. Here, we investigate the angiotensin-converting enzyme (ACE) inhibitor drug captopril, which extends lifespan in worms and mice. To investigate the mechanism, we performed a forward genetic screen for captopril-hypersensitive mutants. We identified a missense mutation that causes a partial loss of function of the daf-2 receptor tyrosine kinase gene, a powerful regulator of aging. The homologous mutation in the human insulin receptor causes Donohue syndrome, establishing these mutant worms as an invertebrate model of this disease. Captopril functions in C. elegans by inhibiting ACN-1, the worm homolog of ACE. Reducing the activity of acn-1 via captopril or RNA interference promoted dauer larvae formation, suggesting that acn-1 is a daf gene. Captopril-mediated lifespan extension was abrogated by daf-16(lf) and daf-12(lf) mutations. Our results indicate that captopril and acn-1 influence lifespan by modulating dauer formation pathways. We speculate that this represents a conserved mechanism of lifespan control.


Assuntos
Proteínas de Caenorhabditis elegans , Captopril , Animais , Humanos , Camundongos , Captopril/farmacologia , Captopril/metabolismo , Caenorhabditis elegans/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Envelhecimento , Longevidade/fisiologia , Receptor de Insulina/metabolismo , Mutação/genética , Mamíferos/metabolismo
13.
Ageing Res Rev ; 94: 102181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182079

RESUMO

This paper addresses how long lifespan can be extended via multiple interventions, such as dietary supplements [e.g., curcumin, resveratrol, sulforaphane, complex phytochemical mixtures (e.g., Moringa, Rhodiola)], pharmaceutical agents (e.g., metformin), caloric restriction, intermittent fasting, exercise and other activities. This evaluation was framed within the context of hormesis, a biphasic dose response with specific quantitative features describing the limits of biological/phenotypic plasticity for integrative biological endpoints (e.g., cell proliferation, memory, fecundity, growth, tissue repair, stem cell population expansion/differentiation, longevity). Evaluation of several hundred lifespan extending agents using yeast, nematode (Caenorhabditis elegans), multiple insect and other invertebrate and vertebrate models (e.g., fish, rodents), revealed they responded in a manner [average (mean/median) and maximum lifespans] consistent with the quantitative features [i.e., 30-60% greater at maximum (Hormesis Rule)] of the hormetic dose response. These lifespan extension features were independent of biological model, inducing agent, endpoints measured and mechanism. These findings indicate that hormesis describes the capacity to extend life via numerous agents and activities and that the magnitude of lifespan extension is modest, in the percentage, not fold, range. These findings have important implications for human aging, genetic diseases/environmental stresses and lifespan extension, as well as public health practices and long-term societal resource planning.


Assuntos
Hormese , Longevidade , Animais , Humanos , Longevidade/fisiologia , Hormese/fisiologia , Envelhecimento/fisiologia , Caenorhabditis elegans/fisiologia , Estresse Fisiológico
14.
Biogerontology ; 25(1): 1-8, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38206540

RESUMO

About a year ago, members of the editorial board of Biogerontology were requested to respond to a query by the editor-in-chief of the journal as to what one question within their field of ageing research still needs to be asked and answered. This editorial is inspired by the wide range and variety of questions, ideas, comments and suggestions received in response to that query. The seven knowledge gaps identified in this article are arranged into three main categories: evolutionary aspects of longevity, biological survival and death aspects, and heterogeneity in the progression and phenotype of ageing. This is not an exhaustive and exclusive list, and may be modified and expanded. Implications of these knowledge gaps, especially in the context of ongoing attempts to develop effective interventions in ageing and longevity are also discussed.


Assuntos
Geriatria , Longevidade/fisiologia , Fenótipo , Evolução Biológica
15.
Artigo em Inglês | MEDLINE | ID: mdl-37701988

RESUMO

Dynamic measures of resilience-the ability to resist and recover from a challenge-may be informative of the rate of aging before overt manifestations such as chronic disease, disability, and frailty. From this perspective mid-life resilience may predict longevity and late-life health. To test this hypothesis, we developed simple, reproducible, clinically relevant challenges, and outcome measures of physical resilience that revealed differences between and within age groups of genetically heterogeneous mice, and then examined associations between mid-life resilience and both lifespan and late-life measures of physiological function. We demonstrate that time to recovery from isoflurane anesthesia and weight change following a regimen of chemotherapy significantly differed among young, middle-aged, and older mice, and were more variable in older mice. Females that recovered faster than the median time from anesthesia (more resilient) at 12 months of age lived 8% longer than their counterparts, while more resilient males in mid-life exhibited better cardiac (fractional shortening and left ventricular volumes) and metabolic (glucose tolerance) function at 24 months of age. Moreover, female mice with less than the median weight loss at Day 3 of the cisplatin challenge lived 8% longer than those that lost more weight. In contrast, females who had more weight loss between Days 15 and 20 were relatively protected against early death. These data suggest that measures of physical resilience in mid-life may provide information about individual differences in aging, lifespan, and key parameters of late-life health.


Assuntos
Longevidade , Resiliência Psicológica , Masculino , Camundongos , Feminino , Animais , Longevidade/fisiologia , Envelhecimento/fisiologia , Exame Físico , Redução de Peso
16.
Geroscience ; 46(2): 1731-1754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37740140

RESUMO

The twofold life expectancy difference between dog breeds predicts differential behavioral and cognitive aging patterns between short- and long-lived dogs. To investigate this prediction, we conducted a cross-sectional analysis using survey data from over 15,000 dogs. We examined the effect of expected lifespan and three related factors (body size, head shape, and purebred status) on the age trajectory of various behavioral characteristics and the prevalence of canine cognitive dysfunction (CCD). Our findings reveal that, although age-related decline in most behavioral characteristics began around 10.5 years of age, the proportion of dogs considered "old" by their owners began to increase uniformly around 6 years of age. From the investigated factors, only body size had a systematic, although not gradual, impact on the aging trajectories of all behavioral characteristics. Dogs weighing over 30 kg exhibited an earlier onset of decline by 2-3 years and a slower rate of decline compared to smaller dogs, probably as a byproduct of their faster age-related physical decline. Larger sized dogs also showed a lower prevalence of CCD risk in their oldest age group, whereas smaller-sized dogs, dolichocephalic breeds, and purebreds had a higher CCD risk prevalence. The identification of differential behavioral and cognitive aging trajectories across dog groups, and the observed associations between body size and the onset, rate, and degree of cognitive decline in dogs have significant translational implications for human aging research, providing valuable insights into the interplay between morphology, physiological ageing, and cognitive decline, and unravelling the trade-off between longevity and relative healthspan.


Assuntos
Disfunção Cognitiva , Longevidade , Animais , Cães , Envelhecimento/fisiologia , Tamanho Corporal , Estudos Transversais , Longevidade/fisiologia
17.
Biochem Biophys Res Commun ; 692: 149354, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091837

RESUMO

Aging is an intricate process characterized by the gradual deterioration of the physiological integrity of a living organism. This unfortunate phenomenon inevitably leads to a decline in functionality and a heightened susceptibility to the ultimate fate of mortality. Therefore, it is of utmost importance to implement interventions that possess the capability to reverse or preempt age-related pathology. Caloric restriction mimetics (CRMs) refer to a class of molecules that have been observed to elicit advantageous outcomes on both health and longevity in various model organisms and human subjects. Notably, these compounds offer a promising alternative to the arduous task of adhering to a caloric restriction diet and mitigate the progression of the aging process and extend the duration of life in laboratory animals and human population. A plethora of molecular signals have been linked to the practice of caloric restriction, encompassing Insulin-like Growth Factor 1 (IGF1), Mammalian Target of Rapamycin (mTOR), the Adenosine Monophosphate-Activated Protein Kinase (AMPK) pathway, and Sirtuins, with particular emphasis on SIRT1. Therefore, this review will center its focus on several compounds that act as CRMs, highlighting their molecular targets, chemical structures, and mechanisms of action. Moreover, this review serves to underscore the significant relationship between post COVID-19 syndrome, antiaging, and importance of utilizing CRMs. This particular endeavor will serve as a comprehensive guide for medicinal chemists and other esteemed researchers, enabling them to meticulously conceive and cultivate novel molecular entities with the potential to function as efficacious antiaging pharmaceutical agents.


Assuntos
Restrição Calórica , Sirtuínas , Animais , Humanos , Síndrome Pós-COVID-19 Aguda , Envelhecimento/metabolismo , Longevidade/fisiologia , Sirtuínas/metabolismo , Mamíferos/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(50): e2311019120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064506

RESUMO

The prevalence of obesity is increasing in older adults and contributes to age-related decline. Caloric restriction (CR) alleviates obesity phenotypes and delays the onset of age-related changes. However, how late in life organisms benefit from switching from a high-(H) to a low-calorie (L) diet is unclear. We transferred male flies from a H to a L (HL) diet or vice versa (LH) at different times during life. Both shifts immediately change fly rate of aging even when applied late in life. HL shift rapidly reduces fly mortality rate to briefly lower rate than in flies on a constant L diet, and extends lifespan. Transcriptomic analysis uncovers that flies aged on H diet have acquired increased stress response, which may have temporal advantage over flies aged on L diet and leads to rapid decrease in mortality rate after HL switch. Conversely, a LH shift increases mortality rate, which is temporarily higher than in flies aged on a H diet, and shortens lifespan. Unexpectedly, more abundant transcriptomic changes accompanied LH shift, including increase in ribosome biogenesis, stress response and growth. These changes reflect protection from sudden release of ROS, energy storage, and use of energy to growth, which all likely contribute to higher mortality rate. As the beneficial effects of CR on physiology and lifespan are conserved across many organisms, our study provides framework to study underlying mechanisms of CR interventions that counteract the detrimental effects of H diets and reduce rate of aging even when initiated later in life.


Assuntos
Ingestão de Energia , Longevidade , Animais , Masculino , Longevidade/fisiologia , Envelhecimento/fisiologia , Restrição Calórica , Drosophila melanogaster/fisiologia , Obesidade
19.
Nat Commun ; 14(1): 7832, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052797

RESUMO

Methionine restriction (MetR) extends lifespan in various organisms, but its mechanistic understanding remains incomplete. Whether MetR during a specific period of adulthood increases lifespan is not known. In Drosophila, MetR is reported to extend lifespan only when amino acid levels are low. Here, by using an exome-matched holidic medium, we show that decreasing Met levels to 10% extends Drosophila lifespan with or without decreasing total amino acid levels. MetR during the first four weeks of adult life only robustly extends lifespan. MetR in young flies induces the expression of many longevity-related genes, including Methionine sulfoxide reductase A (MsrA), which reduces oxidatively-damaged Met. MsrA induction is foxo-dependent and persists for two weeks after cessation of the MetR diet. Loss of MsrA attenuates lifespan extension by early-adulthood MetR. Our study highlights the age-dependency of the organismal response to specific nutrients and suggests that nutrient restriction during a particular period of life is sufficient for healthspan extension.


Assuntos
Drosophila , Longevidade , Animais , Longevidade/fisiologia , Drosophila/metabolismo , Metionina/metabolismo , Aminoácidos/metabolismo , Racemetionina , Metionina Sulfóxido Redutases/genética
20.
Nat Commun ; 14(1): 7683, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001113

RESUMO

Dietary restriction is an effective anti-ageing intervention across species. However, the molecular mechanisms from the metabolic aspects of view are still underexplored. Here we show ACS-20 as a key mediator of dietary restriction on healthy ageing from a genetic screen of the C. elegans acyl-CoA synthetase family. ACS-20 functions in the epidermis during development to regulate dietary restriction-induced longevity. Functional transcriptomics studies reveal that elevated expression of PTR-8/Patched is responsible for the proteostasis and lifespan defects of acs-20. Furthermore, the conserved NHR-23 nuclear receptor serves as a transcriptional repressor of ptr-8 and a key regulator of dietary restriction-induced longevity. Mechanistically, a specific region in the ptr-8 promoter plays a key role in mediating the transcription regulation and lifespan extension under dietary restriction. Altogether, these findings identify a highly conserved lipid metabolism enzyme as a key mediator of dietary restriction-induced lifespan and healthspan extension and reveal the downstream transcriptional regulation mechanisms.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Restrição Calórica , Envelhecimento/genética , Fatores de Transcrição/metabolismo , Longevidade/fisiologia , Proteínas de Transporte/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...